Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes.

نویسندگان

  • Ramón R Barrales
  • Philipp Korber
  • Juan Jimenez
  • José I Ibeas
چکیده

Cell adhesion and biofilm formation are critical processes in the pathogenicity of fungi and are mediated through a family of adhesin proteins conserved throughout yeasts and fungi. In Saccharomyces cerevisiae, Flo11 is the main adhesin involved in cell adhesion and biofilm formation, making the study of its function and regulation in this nonpathogenic budding yeast highly relevant. The S. cerevisiae FLO11 gene is driven by a TATA-box-containing promoter that is regulated through one of the longest regulatory upstream regions (3 kb) in yeast. We reported recently that two chromatin cofactor complexes, the Rpd3L deacetylase and the Swi/Snf chromatin-remodeling complexes, contribute significantly to the regulation of FLO11. Here, we analyze directly how these complexes impact on FLO11 promoter chromatin structure and dissect further the interplay between histone deacetylases, chromatin remodeling, and the transcriptional repressor Sfl1. We show that the regulation of chromatin structure represents an important layer of control in the highly complex regulation of the FLO11 promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that Swi/Snf directly represses transcription in S. cerevisiae.

Many studies have established that the Swi/Snf family of chromatin-remodeling complexes activate transcription. Recent reports have suggested the possibility that these complexes can also repress transcription. We now present chromatin immunoprecipitation evidence that the Swi/Snf complex of Saccharomyces cerevisiae directly represses transcription of the SER3 gene. Consistent with its role in ...

متن کامل

Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae.

The Snf-Swi complex of the yeast Saccharomyces cerevisiae has been shown to control gene expression by controlling chromatin structure. We have analyzed the promoter of the SUC2 gene, a gene strongly controlled by Snf-Swi, by a high resolution analysis of micrococcal nuclease digests. This analysis suggests that there are at least four nucleosomes positioned over the SUC2 TATA and UAS regions u...

متن کامل

SWI/SNF and Asf1p cooperate to displace histones during induction of the saccharomyces cerevisiae HO promoter.

Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region t...

متن کامل

Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene

The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7....

متن کامل

A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo.

Nucleosomes have been shown to repress transcription both in vitro and in vivo. However, the mechanisms by which this repression is overcome are only beginning to be understood. Recent evidence suggests that in the yeast Saccharomyces cerevisiae, many transcriptional activators require the SNF/SWI complex to overcome chromatin-mediated repression. We have identified a new class of mutations in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 191 3  شماره 

صفحات  -

تاریخ انتشار 2012